This week

1. Lines in \mathbb{R}^2
2. Section 12.5: lines and planes in space
3. Application: perspective projection
Points and vectors

Convention

- *From now on we will identify points with terminal points of vectors in standard position:*
 - $P = \mathbf{v}$
- *We will abandon the notation $\langle x_1, \ldots, x_n \rangle$ and use (x_1, \ldots, x_n) instead.*

Parametrisation

Definition

A line in \mathbb{R}^2 is defined by an equation of the form

$$\ell: ax + by = c \quad (*)$$

with a, b and c real numbers.

- The line ℓ consists of the points that satisfy equation $(*)$:
 $$\ell = \{(x, y) \mid ax + by = c\}.$$
- The line ℓ is the **solution set** of equation $(*)$.
Definition

A parametrisation of the line ℓ is a function $r: \mathbb{R} \rightarrow \mathbb{R}^2$ such that $r(t)$ reaches all points of ℓ while t runs through all real numbers.

- The number t is called the **parameter**.
- The line ℓ is the set of all points $r(t)$:
 \[\ell = \{ r(t) \mid t \in \mathbb{R} \} . \]
- The function $r(t)$ has two components that both depend on t:
 \[r(t) = (x(t), y(t)) . \]
- Functions like r with values in \mathbb{R}^n are called **vector functions**.

Example

Given is the line ℓ: $2x + 3y = 6$. Find a parametrisation of ℓ.

\[\ell = \{ (x, y) \mid 2x + 3y = 6 \} . \]
Example

Find an equation for the line

\[\ell: (3t, 2 - 2t), \quad t \in \mathbb{R}. \]

Theorem

For every line \(\ell \) there exist numbers \(p_1, p_2, v_1 \) and \(v_2 \) such that

\[r(t) = (p_1 + v_1 t, p_2 + v_2 t) \quad t \in \mathbb{R}. \]

- Write \(r(t) \) as follows:
 \[r(t) = (p_1, p_2) + t(v_1, v_2). \]
- The vector \(p = (p_1, p_2) \) is called a support vector of \(\ell \).
- The vector \(v = (v_1, v_2) \) is called a direction vector of \(\ell \).
- Define \(q = r(1) \), then
 \[r(1) = p + v, \quad \text{dus} \quad v = q - p. \]
- The parametrised vector form of \(\ell \) is
 \[\ell: r(t) = p + t v \quad t \in \mathbb{R}. \]
Example

Find a support- and a direction vector of the line \(\ell: 2x + 3y = 6 \), and find a parametrised vector form of \(\ell \).

Lines in space

Definition

Let \(p \) and \(v \neq 0 \) be vectors. The \textbf{parametrised vector form} of the line through \(p \) and parallel to \(v \) is

\[
\mathbf{r}(t) = p + tv, \quad t \in \mathbb{R}.
\]

- The vector \(p \) is called a \textbf{support vector} and the vector \(v \) is called a \textbf{direction vector} of the line.
- If \(\mathbf{r}(t) = (f(t), g(t), h(t)) \), then the equations

\[
\begin{align*}
x &= f(t), \\
y &= g(t), \\
z &= h(t)
\end{align*}
\]

are called the \textbf{parametric equations} of the line.
Example 1

Find the parametric equations of the line ℓ through $(-2, 0, 4)$ in the direction

$$\mathbf{v} = 2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$$

$$= (2, 4, -2).$$

Example 2

Find the parametric equations of the line ℓ through $P = (-3, 2, -3)$ and $Q = (1, -1, 4)$.
Summary

- A parametrisation of the line through a point P parallel to a vector $v \neq 0$ is
 $$p + tv, \quad t \in \mathbb{R},$$
 with support vector $p = \overrightarrow{OP}$ and direction vector v.
- A parametrisation of the line through two points P and Q is
 $$p + tv, \quad t \in \mathbb{R}$$
 with support vector $p = \overrightarrow{OP}$ and direction vector $v = \overrightarrow{PQ}$.

Warning

Parametrisations are not unique:

- Every point on the line can be chosen as support vector.
- Every non-zero vector parallel to the line can be chosen as direction vector.

Intersection of two lines in \mathbb{R}^3

- Suppose two lines ℓ and m have parametrised vector forms $p + tv$ and $q + sw$ respectively.
- An intersection is found if there are values for t and s such that
 $$p + tv = q + sw.$$
 (*)
- Since vector equations in \mathbb{R}^3 yield three equations, equation (*) may fail to have a solution, even if ℓ and m are not parallel.
- Non-parallel lines that do not intersect are called skew.
Example

Let \(\ell \) be the line with support vector \((-3, -3, 1)\) and direction vector \((2, 1, 1)\). Let \(m \) be the line with support vector \((2, -3, -2)\) and direction vector \((-1, 2, 4)\). Determine if \(\ell \) and \(m \) intersect, and if so, find the intersection point.

Example

Let \(\ell \) be the line with support vector \((-3, -3, 0)\) and direction vector \((2, 1, 1)\). Let \(m \) be the line with support vector \((2, -3, -2)\) and direction vector \((-1, 2, 4)\). Determine if \(\ell \) and \(m \) intersect, and if so, find the intersection point.
Planes in space

3.1 Definition

A plane in \(\mathbb{R}^3 \) is defined by an equation of the form

\[M : ax + by + cz = d \]

with \(a, b, c \) and \(d \) real numbers.

Examples:

- The plane \(M_1 \) defined by
 \[M_1 : x + y + z = 1 \]
 passes through the points \((1, 0, 0), (0, 1, 0)\) and \((0, 0, 1)\).

- The plane \(M_2 \) defined by
 \[M_2 : x + y + z = 0 \]
 passes through \(O \) and is parallel to \(M_1 \).

- The plane \(M_3 \) defined by
 \[M_3 : 2y = 3 \]
 is the plane through \((0, 3/2, 0)\) parallel to the \(xz\)-plane.

3.2 Support vector of a plane

Definition

A support vector of a plane \(M \) is a vector \(\mathbf{p} = \overrightarrow{OP} \) with \(P \) a point of \(M \).

- Suppose \(M \) is defined by \(ax + by + cz = d \), and let \(P = (x_0, y_0, z_0) \) be a point in \(M \), then \(ax_0 + by_0 + cz_0 = d \), hence
 \[a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 \]
 for all \((x, y, z)\) in \(M \).

Definition

The equation

\[a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 \]

is called the vector equation of \(M \).
Normal vectors

Definition

A **normal vector** of a plane M is a vector $\mathbf{n} \neq \mathbf{0}$ that is perpendicular to M.

- Let M be a plane defined by the vector equation
 \[
 a(x - x_0) + b(y - y_0) + c(z - z_0) = 0,
 \]
 then for all (x, y, z) in M:
 \[
 (a, b, c) \cdot (x - x_0, y - y_0, z - z_0) = 0,
 \]
 \[
 (a, b, c) \cdot (x, y, z) - (x_0, y_0, z_0) = 0.
 \]

- Define $\mathbf{x} = (x, y, z)$, $\mathbf{p} = (x_0, y_0, z_0)$ and $\mathbf{n} = (a, b, c)$, then
 \[
 \mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0 \quad \text{for all } \mathbf{x} \text{ in } M.
 \]

Definition

The equation $\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$ is called the **normal equation** of M.

The normal equation

Theorem

Let M be defined by the normal equation $\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$, where \mathbf{n} is a normal vector of M, and let $\mathbf{p} = (x_0, y_0, z_0)$ be a support vector. If $X = (x, y, z)$ is a point of M then $\mathbf{n} \perp \overrightarrow{PX}$.

- Note that $\overrightarrow{PX} = \mathbf{x} - \mathbf{p}$.
Example

Find an equation of the plane M through $(-3, 0, 7)$ orthogonal to $n = (5, 2, -1)$.

Example

Find a normal equation for the plane $M: y - 2z = 4$.
Unlike lines in \mathbb{R}^2, lines in \mathbb{R}^3 cannot be described by one equation: a linear equation $ax + by + cz = d$ describes a plane.

In order to describe a line you need two equations:

$$\begin{cases} ax + by + cz = d \\ px + qy + rz = s \end{cases}$$

Regard a line as the intersection of two planes:

Example

Give a parametrisation of the line described by the equations

$$\begin{cases} x + y - 2z = -1 \\ 2x - y + z = 2 \end{cases}$$
Example (continued)

Check your answer!
Intersection of a line and a plane

Example

The line ℓ is defined by the parametrisation

$$x = \frac{8}{3} + 2t, \quad y = -2t, \quad z = 1 + t, \quad t \in \mathbb{R}.$$

Find the intersection of ℓ and the plane $3x + 2y + 6z = 6$.

Application: perspective projection

- Parametrise the line ℓ as follows:

 $$\ell : \mathbf{r}(t) = (x_0, 0, 0) + t(x_1 - x_0, y_1, z_1), \quad t \in \mathbb{R}.$$

- The intersection of ℓ and the yz-plane is $P = \mathbf{r}(t_0)$ with $t_0 = \frac{x_0}{x_0 - x_1}$.

- For $P = (0, y, z)$ we have

 $$y = t_0 y_1 = \frac{x_0 y_1}{x_0 - x_1} \quad \text{and} \quad z = t_0 z_1 = \frac{x_0 z_1}{x_0 - x_1}.$$